The Autonomous flying drone uses the computer vision technology to hover in the air avoiding the objects to keep moving on the right path. Apart from security surveillance and Ariel view monitoring, AI drone is now used by online retail giant Amazon to deliver the products at customer’s doorstep revolutionizing the transportation and delivery system by logistics and supply chain companies.

How Computer Vision in Drone Technology Works?

Computer vision is playing a key role in detecting the various types of objects while flying in midair. A high-performance on board image processing and a drone neural network are used for object detection, classification, and tracking while flying into the air.

Also Read: What Is Computer Vision: How It Works in Machine Learning and AI?

The neural network in drones helps to detect the various types of objects like vehicles, foothills, buildings, trees, objects on or near the surface of the water, as well as diverse terrain. Computer vision also helps detect livening beings like humans, whales, ground animals and other marine mammals with a high level of accuracy.

A self-flying drone is built with various in-built with computerized programming and using the technology like propulsion and navigation systems, GPS, sensors and cameras, programmable controllers as well as equipment for automated flights.

The Drone used to capture the data using the camera and sensors, which is later analyzed to extract useful information to utilize for a specific purpose. This process is known as computer vision and related to automatic extraction, analysis and understanding of meaningful information through one or more images processed through computer vision technology.

Machine Learning & Deep Learning for Computer Vision in Drones

Computer vision now backed with machine learning and deep learning algorithms is making a drastic change in the drone industry. It helps algorithms to learn from captured images of various objects that come while using drones for various purposes.

Also Read: How to Annotate Images for Deep Learning: Image Annotation Techniques

The objects are annotated to make it recognizable to drones through computer vision. And a wide variety of entities are labeled to make sure drone can detect and decide its direction and control to fly safely avoiding the obstacles in the path.

Computer Vision in Drones have mainly three Applications:

  • Object tracking
  • Self-navigation
  • Obstacle detection and collision avoidance technologies

Computer vision in drones helps to track the objects while working for self-navigation and detect the obstacles to avoid a collision from such objects. While object tracking drone captures the real-time data during the flight, processes it with an on-board intelligence system in real-time, and makes a human-independent decision based on the processed data.

Computer Vision for Drone

While on the other hand, in self-navigation drones get pre-defined GPS coordinates about departure and destination points, with the capability to find the most optimal way and get there without manual control thanks to AI-enabled computer vision advances.

Similarly, GPS navigation is not enough to solve the problem of collision avoidance. Resulting, drones or autonomous flying objects crash into trees, buildings, high-rise poles, drones and various similar varied types of unlimited objects lying or standing in the natural environment.

Here, the drone needs to be trained with a huge amount of data sets to make it learn and detect a wide variety of objects and obstacles, both static and in motion, and avoid them when moving at a high speed. And it is possible when right image annotation companies ensure providing the precisely annotated data to train the AI model for autonomous flying.

Also Read: What is the Importance of Image Annotation in AI And Machine Learning

Types of Image Annotations for Drone Training

There are various image annotation techniques, used to create the training data for drone developments. Cogito is one of the leading companies in image annotation to annotate the data with an exceptional level of accuracy to make sure drones can easily detect the varied objects.

So, let’s find out here what are the types of image annotation services available for drones and why a particular image annotation technique is useful for drones.

2D Bounding Boxes for Object Tracking

Bounding boxes outlined the object of interest to visual the 2D of the item. It captures the object in rectangular or in a square shape to provide drone a visualre cognition of objects from the aerial. You can find here the few annotated images using the bounding box techniques.

2D Bounding Box Annotation

2D Bounding box image annotation can be used on still images of moving objects in the video. And in a few cases, additional tags or label is added to name the object as it is known in the natural environment. This is one of the most common and simplest annotations used for creating training data for drones.

3D Cuboids Annotation for Object Recognition

This annotation technique helps to detect the object with third dimension visualization that gives more precise recognition of objects and depicts length, width, and approximate depth of objects. To make machines can understand the real-world scenario of the world, 3D bounding box annotation is used.

3D Cuboids Annotation

Used to create a real-world scenario for self-driving cars, 3D cuboid annotation services are most helpful while developing an autonomous vehicle model. Apart from that, it also gives the precise detection of indoor objects for better in-depth object detection to computer vision-based AI models.

Polygon Annotation for Objects Localization

Similarly, polygon annotation also helps to detect the objects in asymmetrical or coarse shapes. Drones flying in the midair can detect and localize objects like houses and other structures capturing the various similar objects like rooftops, pools or trees with localization.

Polygon Annotation

The most interesting part of polygon annotation is that it annotates the objects in irregular shapes providing the true detection of objects from aerial view. Apart from creating computer vision-based visualization for autonomous flying, polygon annotation is also used for autonomous driving models.

Semantic Segmentation to Avoid Obstacles

Semantic segmentation for drone training provides an enhanced visualization of objects of interest. It mainly helps to classify, localize, detect and segment multiple types of objects in the image belongs to a single class making easier for drones to classify various objects that comes on the way.

Semantic Segmentation Need Cropped

Semantic segmentation is done with pixel-wise annotation while ensuring quality and precision. In drones training semantic segmentation is also used for geo sensing and monitoring of deforestation or urbanization of open fields or agricultural lands making the farming sector improve productivity.

Video Annotation for Moving Object Detection

Video annotation for drone training helps to recognize the moving objects while flying in the midair. Humans running, livestock moving or vehicles driving fast can be only recognized by drones, if trained with right training data created through image annotation service.

Cogito provides high-quality video annotation to label the objects of interest in the video with frame-by-frame annotations making even the fast-moving objects detectable. Autonomous flying drones can recognize the wide variety of objects with accuracy.

Developing a computer vision-based AI drones needs lots of training data to visualize the various types of objects while flying in the midair and avoid collisions. And to train the AI model for the drone, precisely annotated images required for a machine-learning algorithm to detect the objects or recognize people or other actions and process the data.

Also Read: How Much Training Data is Required for Machine Learning Algorithms

Cogito is providing the autonomous flying training data solutions with a wide range of image annotations for top aerial view in the images for drone mapping and imagery making the drone training possible with highly accurate training data.