Machine Learning (ML) model accuracy is the most important factor that makes such developments successful and reliable in the market. The more accurate the model, it will give the precise results in various scenarios making such model more meaningful and relevant to enrich the customer experience when used in real-life.

If your ML model is not giving the satisfying results, you need to work closely to improve the accuracy. Actually, there are various ways you can improve accuracy of machine learning model  which are discussed below to get better results.

Five Ways to Increase Accuracy Of Machine Learning Model

Accuracy Of Machine Learning Model

1# Feed with More Training Data

Having more amount of data means you are giving more information to your machine learning algorithms to understand the various situations and correlate the same before giving the right answer.

And having the more training data means, you need to add variety of data that can cover wide-ranging scenario to avoid the biased decisions. Hence, the more data you feed it will definitely improve the accuracy of model.

Also Read: How Model Predictions are used to Increase Data Labeling Speed and Improve Accuracy?

2# Treat the Missing Values in Data

The missing and outlier values in the machine learning training data also reduce the accuracy of model or makes the model give a biased decision. It happens because usually we don’t analyze the action and relationship with other variables in the right way.

Actually, there are multiple methods to treat outliers and missing values – impute mean, median or mode values in the case of continuous variables and for categorical variables use a class. For outliers you can either delete them or do some transformations.

3# Finding the Right Variables or Features

The another way to improve the ML model accuracy is finding the right variables or features which is extracted as new information. Actually, features have a maximum impact on the outcome and is one of the key aspects.

If you have better knowledge and visualizations you can find the variables correctly. And it is vitally important to consider as many relevant variables and potential outcomes as possible before deploying a machine learning algorithm.

4# Ensemble Models Method

Ensemble models is the most common method that combines multiple models to improve accuracy using bagging and boosting. The Ensemble method can improve the performance of prediction of more than any single model. And random forests is the technique used many times for ensembling the machine learning model.

Actually, there are two reasons to apply ensemble methods to improve the accuracy of your model. First – they are generally more complex than traditional methods and second – The traditional methods gives a right base level from which you can improve and draw from to create your ensembles for your ML model.

5# Re-validation of Model

The accuracy of machine learning model can be also improved by re-validating the model at regular intervals. For this, it is important to score the model after using the new data on a daily, weekly or monthly basis as per the changes in the data.

Also Read: How to Validate Machine Learning Models: ML Model Validation Methods

And if necessary, rebuild the models at periodic levels with different types of techniques to challenge the model present in the production. ML model validation can be done through automatically or manually, depending on the type of model and validation team available for performing such task in an unbiased manner.

Summing-up

Apart from these popular methods, using the multiple algorithms and tunning the algorithms to find the optimum value for each parameter also improves the accuracy of the model. However, it is not necessary that higher accuracy models always give accurate results, as sometimes, the improvement in model’s accuracy can be due to over-fitting too. But you can follow the mentioned above foundational methods to ensure your model’s accuracy.